Search

Google
 

ads

Wednesday, April 9, 2014

Messerschmitt Me 109G-6 GUSTAW

Messerschmitt Me 109G-6 GUSTAW Papercraft military, Messerschmitt Me 109G-6 GUSTAW papermodel download, Messerschmitt Me 109G-6 GUSTAW papermodel, Messerschmitt Me 109G-6 GUSTAW modelkits, Messerschmitt Me 109G-6 GUSTAW modelkits download, Messerschmitt Me 109G-6 GUSTAW papercraft model , Messerschmitt Me 109G-6 GUSTAW download papermodel , Messerschmitt Me 109G-6 GUSTAW papercraft model download, Messerschmitt Me 109G-6 GUSTAWfree download papermodel, Messerschmitt Me 109G-6 GUSTAW military papercraft, Messerschmitt Me 109G-6 GUSTAW military papermodel, Messerschmitt Me 109G-6 GUSTAW military modelkits




Messerschmitt Bf 109 Papercraft military, Messerschmitt Bf 109 papermodel download, Messerschmitt Bf 109 papermodel, Messerschmitt Bf 109 modelkits, Messerschmitt Bf 109 modelkits download, Messerschmitt Bf 109 papercraft model , Messerschmitt Bf 109 download papermodel , Messerschmitt Bf 109 papercraft model download, Messerschmitt Bf 109free download papermodel, Messerschmitt Bf 109 military papercraft, Messerschmitt Bf 109 military papermodel, Messerschmitt Bf 109 military modelkits




Samolot mysliwski Messerschmitt Me 109G-6 GUSTAW Papercraft military, Samolot mysliwski Messerschmitt Me 109G-6 GUSTAW papermodel download, Samolot mysliwski Messerschmitt Me 109G-6 GUSTAW papermodel, Samolot mysliwski Messerschmitt Me 109G-6 GUSTAW modelkits, Samolot mysliwski Messerschmitt Me 109G-6 GUSTAW modelkits download, Samolot mysliwski Messerschmitt Me 109G-6 GUSTAW papercraft model , Samolot mysliwski Messerschmitt Me 109G-6 GUSTAW download papermodel , Samolot mysliwski Messerschmitt Me 109G-6 GUSTAW papercraft model download, Samolot mysliwski Messerschmitt Me 109G-6 GUSTAWfree download papermodel, Samolot mysliwski Messerschmitt Me 109G-6 GUSTAW military papercraft, Samolot mysliwski Messerschmitt Me 109G-6 GUSTAW military papermodel, Samolot mysliwski Messerschmitt Me 109G-6 GUSTAW military modelkits




The Messerschmitt Bf 109, often called Me 109 (most often by Allied pilots and aircrew), was a German World War II fighter aircraft designed by Willy Messerschmitt and Robert Lusser during the early to mid-1930s.[2] It was one of the first truly modern fighters of the era, including such features as all-metal monocoque construction, a closed canopy, a retractable landing gear, and was powered by a liquid-cooled, inverted-V12 aero engine.[2]


The Bf 109 first saw operational service during the Spanish Civil War and was still in service at the dawn of the jet age at the end of World War II, during which time it was the backbone of the Luftwaffe’s fighter force.[3] From the end of 1941 the Bf 109 was supplemented by the Focke-Wulf Fw 190.


Originally conceived as an interceptor, later models were developed to fulfill multiple tasks, serving as bomber escort, fighter-bomber, day-, night-, all-weather fighter, ground-attack aircraft, and as reconnaissance aircraft. It was supplied to and operated by several states during World War II, and served with several countries for many years after the war. The Bf 109 was the most produced fighter aircraft in history, with a total of 33,984 airframes produced from 1936 up to April 1945.[1][3]


The Bf 109 was flown by the three top-scoring German fighter aces of World War II, who claimed 928 victories among them while flying with Jagdgeschwader 52, mainly on the Eastern Front, as well as by Hans-Joachim Marseille, the highest scoring German ace in the North African Campaign.[4] It was also flown by several other aces from Germany’s allies, notably Finn Ilmari Juutilainen, the highest scoring non-German ace on the type with 58 victories flying the Bf 109G, and pilots from Italy, Romania, Croatia, Bulgaria and Hungary. Through constant development, the Bf 109 remained competitive with the latest Allied fighter aircraft until the end of the war.[5]



























Bf 109
Me109 G-6 D-FMBB 1.jpg
Restored Messerschmitt Bf 109G-6
RoleFighter
ManufacturerBayerische Flugzeugwerke

Messerschmitt
DesignerWilly Messerschmitt, Robert Lusser
First flight29 May 1935
Introduction1937
Retired1945, Luftwaffe

1965, Spanish Air Force
Primary usersLuftwaffe

Hungarian Air Force

Italian Social Republic Air Force

Royal Romanian Air Force
Number built33,984[1]

+239 HA-1112

+603 Avia S-199
Unit cost
42,900 RM

(G-6, Erla-Maschinenwerk, 1943)

VariantsAvia S-99/S-199

Hispano Aviacion Ha 1112


Design and development


Origins


During 1933, the Technisches Amt (C-Amt), the technical department of the Reichsluftfahrtministerium (RLM) (“Reich Aviation Ministry”), concluded a series of research projects into the future of air combat. The result of the studies was four broad outlines for future aircraft:[6]


  • Rüstungsflugzeug I for a multi-seat medium bomber

  • Rüstungsflugzeug II for a tactical bomber

  • Rüstungsflugzeug III for a single-seat fighter

  • Rüstungsflugzeug IV for a two-seat heavy fighter



File:Me109 clip.ogg



Bf 109 in flight





Rüstungsflugzeug III was intended to be a short range interceptor, replacing the Arado Ar 64 and Heinkel He 51 biplanes then in service. In late March 1933 the RLM published the tactical requirements for a single-seat fighter in the document L.A. 1432/33.[7]


The fighter needed to have a top speed of 400 km/h (250 mph) at 6,000 m (19,690 ft), to be maintained for 20 minutes, while having a total flight duration of 90 minutes. The critical altitude of 6,000 metres was to be reached in no more than 17 minutes, and the fighter was to have an operational ceiling of 10,000 metres.[7] Power was to be provided by the new Junkers Jumo 210 engine of about 522 kW (700 hp). It was to be armed with either a single 20 mm MG C/30 engine-mounted cannon firing through the propeller hub as a Motorkanone or, alternatively, either two engine cowl-mounted 7.92 mm (.312 in) MG 17 machine guns, or one lightweight, engine-mounted 20 mm MG FF cannon with two 7.92 mm MG 17s.[8] The MG C/30 was an airborne adaption of the 2 cm FlaK 30 anti-aircraft gun, which fired very powerful “Long Solothurn” ammunition, but was very heavy and had a low rate of fire. It was also specified that the wing loading should be kept below 100 kg/m2. The performance was to be evaluated based on the fighter’s level speed, rate of climb, and manoeuvrability, in that order.[7]


It has been suggested that Bayerische Flugzeugwerke (BFW) was originally not invited to participate in the competition due to personal animosity between Willy Messerschmitt and RLM director Erhard Milch;[nb 1] however, recent research by Willy Radinger and Walter Shick indicates that this may not have been the case, as all three competing companies—Arado, Heinkel and the BFW—received the development contract for the L.A. 1432/33 requirements at the same time in February 1934.[7] A fourth company, Focke-Wulf, received a copy of the development contract only in September 1934.[7] The powerplant was to be the new Junkers Jumo 210, but the proviso was made that it would be interchangeable with the more powerful, but less developed Daimler-Benz DB 600 powerplant.[10] Each was asked to deliver three prototypes for head-to-head testing in late 1934.


Prototypes







Messerschmitt Bf 109 V1





Design work on Messerschmitt Project Number P.1034 began in March 1934, just three weeks after the development contract was awarded. The basic mock-up was completed by May, and a more detailed design mock-up was ready by January 1935. The RLM designated the design as type “Bf 109,” the next available from a block of numbers assigned to BFW.[7]


The first prototype (Versuchsflugzeug 1 or V1), with civilian registration D-IABI, was completed by May 1935, but the new German engines were not yet ready. In order to get the “R III” designs into the air, the RLM acquired four Rolls-Royce Kestrel VI engines by trading Rolls-Royce a Heinkel He 70 Blitz for use as an engine test-bed.[nb 2] Messerschmitt received two of these engines and adapted the engine mounts of V1 to take the V-12 engine upright. V1 made its maiden flight at the end of May 1935 at the airfield located in the southernmost Augsburg neighborhood of Haunstetten, piloted by Hans-Dietrich “Bubi” Knoetzsch. After four months of flight testing, the aircraft was delivered in September to the Luftwaffe’s central test centre at the Erprobungsstelle Rechlin to take part in the design competition.


In the late summer of 1935, the first Jumo engines became available so V2 was completed in October using the 449 kW (600 hp) Jumo 210A engine. V3 followed, the first to be mounted with guns, but it did not fly until May 1936 due to a delay in procuring another Jumo 210 engine.


Design competition


After Luftwaffe acceptance trials were completed at their central Erprobungsstelle military aviation test and development facility at Rechlin, the prototypes were moved to the Baltic seacoast’s E-Stelle facility at Travemünde for the head-to-head portion of the competition. The aircraft participating in the trials were the Arado Ar 80 V3, the Focke-Wulf Fw 159 V3, the Heinkel He 112 V4 and the Bf 109 V2. The He 112 arrived first, in early February 1936, followed by the rest of the prototypes by the end of the month.


Because most fighter pilots of the Luftwaffe were used to biplanes with open cockpits, low wing loading, light g-forces and easy handling like the Heinkel He 51, they were very critical of the Bf 109 at first. However, it soon became one of the frontrunners in the contest, as the Arado and Focke-Wulf entries, which were intended as “back-up” programmes to safeguard against failure of the two favourites, proved to be completely outclassed. The Arado Ar 80, with its gull wing (replaced with a straight, tapered wing on the V3) and fixed, spatted undercarriage was overweight and underpowered, and the design was abandoned after three prototypes had been built. The parasol winged Fw 159, potentially inspired by the same firm’s earlier Focke-Wulf Fw 56, was always considered by the E-Stelle Travemünde facility’s staff to be a compromise between a biplane and an aerodynamically more efficient, low-wing monoplane. Although it had some advanced features, it used a novel, complex retractable main undercarriage which proved to be unreliable.[11]







JG 53 Bf 109 E-3, c. 1939/1940





Initially, the Bf 109 was regarded with disfavor by E-Stelle test pilots because of its steep ground angle, which resulted in poor forward visibility when taxiing; the sideways-hinged cockpit canopy, which could not be opened in flight; and the automatic leading edge slats on the wings which, it was thought, would inadvertently open during aerobatics, possibly leading to crashes. This was later borne out in combat situations and aerobatic testing by various countries’ test establishments. The leading edge slats and ailerons would flutter rapidly in fast tight turns, making targeting and control difficult, and eventually putting the aircraft into a stall condition. They were also concerned about the high wing loading.[12]


The Heinkel He 112, based on a scaled-down Blitz was the favourite of the Luftwaffe leaders. Compared with the Bf 109, it was also cheaper.[13] Positive aspects of the He 112 included the wide track and robustness of the undercarriage (this opened outwards from mid wing, as opposed to the 109s which opened from the wing root), considerably better visibility from the cockpit, and a lower wing loading that made for easier landings. In addition, the V4 had a single-piece, clear-view, sliding cockpit canopy and a more powerful Jumo 210Da engine with a modified exhaust system. However, the He 112 was also structurally complicated, being some 18% heavier than the Bf 109, and it soon became clear that the thick wing, which spanned 12.6 m (41 ft 4 in) with an area of 23.2 m2 (249.7 ft2) on the first prototype (V1), was a disadvantage for a light fighter, decreasing the aircraft’s rate of roll and manoeuvrability. As a result, the He 112 V4 which was used for the trials had new wings, spanning 11.5 m (37 ft 8.75 in) with an area of 21.6 m2 (232.5 ft2). However, the improvements had not been fully tested and the He 112 V4 could not be demonstrated in accordance with the rules laid down by the Acceptance Commission, placing it at a distinct disadvantage.


Because of its smaller, lighter airframe, the Bf 109 was 30 km/h (20 mph) faster than the He 112 in level flight, and superior in climbing and diving. The Commission ultimately ruled in favour of the Bf 109 because of the Messerschmitt test pilot’s demonstration of the 109′s capabilities during a series of spins, dives, flick rolls and tight turns, throughout which the pilot was in complete control of the aircraft.[14]


In March, the RLM received news that the British Supermarine Spitfire had been ordered into production. It was felt that a quick decision was needed in order to get the winning design into production as soon as possible, so on 12 March the RLM announced the results of the competition in a document entitled Bf 109 Priority Procurement, which ordered the Bf 109 into production. At the same time, Heinkel was instructed to radically re-design the He 112.[15] The Messerschmitt 109 made its public debut during the 1936 Berlin Olympics, when the V1 prototype was flown.[16]


Design features


As with the earlier Bf 108, the new design was based on Messerschmitt’s “lightweight construction” principle, which aimed to minimise the number of separate parts in the aircraft. Examples of this could be found in the use of two large, complex brackets which were fitted to the firewall. These brackets incorporated the lower engine mounts and landing gear pivot point into one unit. A large forging attached to the firewall housed the main spar pick-up points, and carried most of the wing loads. Contemporary design practice was usually to have these main load-bearing structures mounted on different parts of the airframe, with the loads being distributed through the structure via a series of strong-points. By concentrating the loads in the firewall, the structure of the Bf 109 could be made relatively light and uncomplicated.[17]


An advantage of this design was that the main landing gear, which retracted through an 85-degree angle, was attached to the fuselage, making it possible to completely remove the wings for servicing without additional equipment to support the fuselage. It also allowed simplification of the wing structure, since it did not have to bear the loads imposed during takeoff or landing. The one major drawback of this landing gear arrangement was its narrow wheel track, making the aircraft unstable while on the ground. To increase stability, the legs were splayed outward somewhat, creating another problem in that the loads imposed during takeoff and landing were transferred up through the legs at an angle.[18]


The small rudder of the Bf 109 was relatively ineffective at controlling the strong swing created by the powerful slipstream of the propeller during the early portion of the takeoff roll, and this sideways drift created disproportionate loads on the wheel opposite to the swing. If the forces imposed were large enough, the pivot point broke and the landing gear leg would collapse outward into its bay.[18] Experienced pilots reported that the swing was easy to control, but some of the less-experienced pilots lost fighters on takeoff.[19]


Because of the large ground angle caused by the long legs, forward visibility while on the ground was very poor, a problem exacerbated by the sideways-opening canopy. This meant that pilots had to taxi in a sinuous fashion which also imposed stresses on the splayed undercarriage legs. Ground accidents were a problem with rookie pilots, especially during the later stages of the war when pilots received less training before being sent to operational units.[19] At least 10% of all Bf 109s were lost in takeoff and landing accidents, 1,500 of which occurred between 1939 and 1941.[20] The installation of a fixed “tall” tailwheel on some of the late G-10s and 14s and the K-series helped alleviate the problem to a large extent.[21]







Spring-loaded, automatic leading edge slats on a Bf 109E. By using high-lift devices, the handling qualities of the Bf 109 were considerably enhanced.





From the inception of the design, priority was given to easy access to the powerplant, fuselage weapons and other systems while the aircraft was operating from forward airfields. To this end, the entire engine cowling was made up of large, easily removable panels which were secured by large toggle latches. A large panel under the wing centre section could be removed to gain access to the L-shaped main fuel tank, which was sited partly under the cockpit floor and partly behind the rear cockpit bulkhead. Other, smaller panels gave easy access to the cooling system and electrical equipment.[18] The engine was held in two large, forged, magnesium alloy Y-shaped legs which were cantilevered from the firewall. Each of the legs was secured by two quick-release screw fittings on the firewall. All of the main pipe connections were colour-coded and grouped in one place, where possible, and electrical equipment plugged into junction boxes mounted on the firewall. The entire powerplant could be removed or replaced as a unit in a matter of minutes.[18]


Another example of the Bf 109′s advanced design was the use of a single, I-beam main spar in the wing, positioned more aft than usual (to give enough room for the retracted wheel), thus forming a stiff D-shaped torsion box. Most aircraft of the era used two spars, near the front and rear edges of the wings, but the D-box was much stiffer torsionally, and eliminated the need for the rear spar. The wing profile was the NACA 2R1 14.2 at the root and NACA 2R1 11.35 at the tip,[22] with a thickness to chord ratio of 14.2% at the root and 11.35% at the tip.


Another major difference from competing designs was the higher wing-loading. While the R-IV contract called for a wing-loading of less than 100 kg/m2, Messerschmitt felt this was unreasonable. With a low-wing loading and the engines available, a fighter would end up being slower than the bombers it was tasked with catching.[citation needed]


A fighter was designed primarily for high-speed flight. A smaller wing area was optimal for achieving high speed, but low-speed flight would suffer, as the smaller wing would require more airflow to generate enough lift to maintain flight. To compensate for this, the Bf 109 included advanced high-lift devices on the wings, including automatically-opening leading edge slats, and fairly large camber-changing flaps on the trailing edge. The slats increased the lift of the wing considerably when deployed, greatly improving the horizontal maneuverability of the aircraft, as several Luftwaffe veterans, such as Erwin Leykauf, attest.[23][24] Messerschmitt also included ailerons that “drooped” when the flaps were lowered (F series and later the lower radiator flap operated as part of the flap system), thereby increasing the effective flap area . When deployed, these devices effectively increased the wings’ coefficient of lift.


Fighters with liquid cooled engines were vulnerable to hits in the cooling system. For this reason, on later Bf 109 F, G and K models the two coolant radiators were equipped with a cut-off system. If one radiator leaked, it was possible to fly on the second, or to fly for at least five minutes with both closed.[25][26][27][28] In 1943, Oberfeldwebel Edmund Roßmann got lost and landed behind Soviet lines. He agreed to show the Soviets how to service the plane. Soviet machine gun technician Viktor M. Sinaisky recalled:


The Messer was a very well designed plane. First, it had an engine of an inverted type, so it could not be knocked out from below. It also had two water radiators with a cut-off system: if one radiator leaked you could fly on the second or close both down and fly at least five minutes more. The pilot was protected by armour-plate from the back, and the fuel tank was also behind armour. Our planes had fuel tanks in the centre of their wings: that’s why our pilot got burnt. What else did I like about the Messer? It was highly automatic and thus easy to fly. It also employed an electrical pitch regulator, which our planes didn’t have. Our propeller system, with variable pitch was hydraulic, making it impossible to change pitch without engine running. If, God forbid, you turned off the engine at high pitch, it was impossible to turn the propeller and was very hard to start the engine again. Finally, the German ammo counter was also a great thing.[28]


Armament and gondola cannons







A cannon-armed Bf 109E, showing the 20 mm MG FF installations in the wing.





Reflecting Messerschmitt’s belief in low-weight, low-drag, simple monoplanes, the armament was placed in the fuselage. This kept the wings very thin and light. Two synchronized machine guns were mounted in the cowling, firing over the top of the engine and through the propeller arc. An alternative arrangement was also designed, consisting of a single cannon firing through a blast tube between the cylinder banks of the engine, known as a Motorkanone mount in German.[6][nb 3] This was also the choice of armament layout on some contemporary French monoplane fighters, such as the Dewoitine D.520, and dated back to World War I’s small run of SPAD S.XII moteur-canon, 37mm calibre cannon-armed fighters in France.


When it was discovered in 1937 that the RAF was planning eight-gun batteries for its new Hawker Hurricane and Supermarine Spitfire fighters, it was decided that the Bf 109 should be more heavily armed. The problem was that the only place available to mount additional guns was in the wings. There was only one spot available in each wing, between the wheel well and slats and there was room for only one gun, either a 7.92 mm MG 17 machine gun, or a 20 mm MG FF or MG FF/M cannon.[30]


The first version of the 109 to have wing guns was the C-1, which had one MG 17 in each wing. To avoid redesigning the wing to accommodate large ammunition boxes and access hatches, an unusual ammunition feed was devised whereby a continuous belt holding 500 rounds was fed along chutes out to the wing tip, around a roller and then back along the wing, forward and beneath the gun breech, to the wing root where it coursed around another roller and back to the weapon.[30]


The gun barrel was placed in a long, large-diameter tube located between the spar and the leading edge. The tube channeled cooling air around the barrel and breech, exhausting out of a slot at the rear of the wing. The installation was so cramped that parts of the MG 17′s breech mechanism extended into an opening created in the flap structure.[30]


The much longer and heavier MG FF had to be mounted farther along the wing in an outer bay. A large hole was cut through the spar allowing the cannon to be fitted with the ammunition feed forward of the spar, while the breech block projected rearward through the spar. A 60-round ammunition drum was placed in a space closer to the wing root causing a bulge in the underside. A small hatch was incorporated in the bulge to allow access for changing the drum. The entire weapon could be removed for servicing by removing a leading edge panel.[30]







Luftwaffe ground-crew (“black men”) positioning a Bf 109 G-6 “Kanonenvogel” equipped with the Rüstsatz VI underwing gondola cannon kit. Note the slats on the leading edge of the port wing. JG 2, France, autumn of 1943.





From the 109F-series onwards, guns were no longer carried inside the wings. (A noteworthy exception was Adolf Galland’s field-modified Bf 109 F-2, which had a 20 mm MG FF/M installed internally in each wing.)[nb 4] Only some of the projected 109K-series models, such as the K-6, were designed to carry 30 mm (1.18 in) MK 108 cannons in the wings.[31]


In place of internal wing armament, additional firepower was provided through a pair of 20 mm MG 151/20 cannons installed in conformal gun pods under the wings. Although the additional armament increased the fighter’s potency as a bomber destroyer, it had an adverse effect on the handling qualities, reducing its performance in fighter-versus-fighter combat and accentuating the tendency of the fighter to swing pendulum-fashion in flight.[32] The conformal gun pods, exclusive of ammunition, weighed 135 kg (298 lb);[33] and 135 to 145 rounds were provided per gun.[33]


The total weight, including ammunition, was 215 kg.[33] Installation of the under-wing gun pods was a simple task that could be quickly performed by the unit’s armourers, and imposed a reduction of speed of only 8 km/h (5 mph).[33] By comparison, the installed weight of a similar armament of two 20 mm MG 151/20 cannon inside the wings of the FW 190A-4/U8 was 130 kg (287 lb), without ammunition.[34]


Designation and nicknames


Main article: RLM aircraft designation system

Originally the aircraft was designated as Bf 109 by the RLM, since the design was submitted by the Bayerische Flugzeugwerke (literally “Bavarian Aircraft Works”) during 1935. The company was renamed Messerschmitt AG after 11 July 1938 when Erhard Milch finally allowed Willy Messerschmitt to acquire the company. All Messerschmitt aircraft that originated after that date, such as the Me 210, were to carry the “Me” designation. Despite regulations by the RLM, wartime documents from Messerschmitt AG, RLM and Luftwaffe loss and strength reports continued to use both designations, sometimes even on the same page.[35]


All extant airframes bear the official[36] “Bf 109″ designation on their identification plates, including the final K-4 models,[37] with the notable exception of aircraft either initially built or re-fitted by Erla Maschinenwerk at Leipzig, which sometimes bear the erroneous Me 109 stamping.


The aircraft was given several nicknames by its operators and opponents, generally derived from the name of the manufacturer (Messer, Mersu [originally the Finnish nickname for the prestigious Mercedes-Benz cars], Messzer etc.), or the external appearance of the aircraft: the G-6 variant was nicknamed by Luftwaffe personnel as Die Beule (“the bump/bulge”) because of the cowling’s characteristic, bulging covers for the breeches of the 13 mm (.51 in) MG 131 machine guns, with the separate Beule covers eliminated by the time of the G-10 model’s introduction of a subtly reshaped upper cowling, while Soviet aviators nicknamed it “the skinny one” for its sleek appearance (compared to the more robust Fw 190). The names “Anton”, “Berta”, “Caesar”, “Dora”, “Emil”, “Friedrich”, “Gustav” and “Kurfürst” were derived from the variant’s official letter designation (e.g. Bf 109G – “Gustav”), based on the German spelling alphabet of World War II, a practice that was also used for other German aircraft designs.[38]


Record-setting flights


In July 1937, not long after the public debut of the new fighter, three Bf 109Bs took part in the Flugmeeting airshow in Zürich under the command of Major Seidemann. They won in several categories: First Prize in a speed race over a 202 km course, First Prize in the Class A category in the international Alpenrundflug for military aircraft, and victory in the international Patrouillenflug category.[16] On 11 November 1937, the Bf 109 V13 flown by Messerschmitt’s chief pilot Dr. Hermann Wurster, powered by a 1,230 kW (1,650 hp) DB 601R racing engine, set a new world air speed record for landplanes with piston engines of 610.55 km/h (379.38 mph), winning the title for Germany for the first time. Converted from a Bf 109D, the V13 had been fitted with a special racing DB 601R engine that could deliver 1,230 kW (1,650 hp) for short periods.[39][40][nb 5]


Heinkel, having had the He 112 rejected in the design competition of 1936, designed and built the He 100. On 6 June 1938, the He 100 V3, flown by Ernst Udet, captured the record with a speed of 634.7 km/h (394.4 mph). On 30 March 1939, test pilot Hans Dieterle surpassed that record, reaching 746.61 km/h (463.92 mph) with the He 100 V8. Messerschmitt, however, soon regained the lead when, on 26 April 1939, Flugkapitän Fritz Wendel, flying the Me 209 V1, set a new record of 755.14 km/h (469.22 mph). For propaganda purposes, the machine was called the Bf 109R, suggesting it was just another variant of the standard fighter, but in fact it was a racing aircraft having little in common with the Bf 109. It was powered by the DB 601ARJ, producing 1,156 kW (1,550 hp), but capable of reaching 1,715 kW (2,300 hp). This world record for a piston-engined aircraft was to stand until 1969,[41] when Darryl Greenamyer’s modified Grumman F8F Bearcat, Conquest I, broke it with a 777 km/h (483 mph) record speed.[42]


Variants


Main article: Messerschmitt Bf 109 variants






D-FWME, a restored Bf 109G-4.










Bf 109 at the National Air and Space Museum





When the Bf 109 was designed in 1934, by a team led by Willy Messerschmitt and Robert Lusser,[43] its primary role was that of a high-speed, short range interceptor.[44] It utilized the most advanced aerodynamics of the time and embodied advanced structural design which was ahead of its contemporaries.[45] In the years of the Blitzkrieg, the Bf 109 was the only single-engined fighter operated by the Luftwaffe, until the appearance of the Fw 190.


The 109 remained in production from 1937 through 1945 in many different variants and sub-variants. The primary engines used were the Daimler-Benz DB 601 and DB 605, though the Junkers Jumo 210 powered most of the pre-war variants. The most-produced Bf 109 model was the 109G series (more than a third of all 109s built were the G-6 series, some 12,000 units being manufactured from March 1943 until the end of the war).[46]


The initial production models of the A, B, C and D series were powered by the relatively low-powered, 670–700 PS (660-690 HP) Junkers Jumo 210 series engines. A handful of prototypes of these early aircraft were converted to use the more powerful DB 600.[47]


The first major redesign came with the E series, including the naval variant, the Bf 109T (T standing for Träger, or carrier). The Bf 109E, or “Emil”, introduced a number of structural changes in order to accommodate the heavier, but significantly more powerful 1,100 PS (1,085 HP) Daimler-Benz DB 601 engine, heavier armament and increased fuel capacity. Later variants of the Es introduced a fuselage bomb rack or provision for a long-range drop-tank, and used the DB 601N engine of higher power output.[48] The 109E first saw service with the “Condor Legion” during the last phase of the Spanish Civil War and was the main variant from the beginning of World War II until mid-1941 when the 109F replaced it in the pure fighter role.[49] (Eight 109Es were assembled in Switzerland in 1946 by the Dornier-Werke, using licence built airframes; a ninth airframe was assembled using spare parts.)[50]


The second major redesign during 1939–40 gave birth to the F series. The “Friedrich” saw a complete redesign of the wings, the cooling system and fuselage aerodynamics, and was powered by the 1,175 PS (1,159 HP) DB 601N (F-1, F-2) or the 1,350 PS (1,332 HP) DB 601E (F-3, F-4). Considered by many as the high-water mark of Bf 109 development, the F series abandoned the wing cannon and concentrated all armament in the forward fuselage with a pair of synchronized machine guns above and a single 15 or 20mm Motorkanone-mount cannon behind the engine, the latter firing between the cylinder banks and through the propeller hub. This configuration was used by all subsequent variants. A handful of Bf 109Fs were used late in the Battle of Britain in 1940, but the variant only came into wide use in the first half of 1941.[51]







Bf 109 Gustav cockpit





The G series, or “Gustav”, was introduced in mid-1942. Its initial variants (G-1 through G-4) differed only in minor details from the Bf 109F, most notably in the more powerful 1475 PS (1,455 HP) DB 605 engine. Odd numbered variants were built as high-altitude fighters with a pressurized cockpit and GM-1 boost, while even numbered variants were non-pressurized, air superiority fighters and fighter-bombers. Long-range photo-reconnaissance variants also existed. The later G series (G-5 through G-14) was produced in a multitude of variants, with uprated armament and provision for a number of kits of pre-packaged, generally factory- installed parts known as Umrüst-Bausätze (usually contracted to Umbau) and adding a “/U” suffix to the aircraft designation when installed. Field kits known as Rüstsätze were also available for the G-series but those did not change the aircraft designation.) By early 1944 tactical requirements resulted in the addition of MW-50 water injection boost and high-performance superchargers, boosting engine output to 1,800–2,000 PS (1,775-1,973 HP). From early 1944 a number of G-2s, G-3s, G-4s and G-6s were converted to two seat trainers, known as the G-12. An instructor’s cockpit was added behind the original cockpit and both were covered by an elongated, glazed canopy.[52] The so-called Rüstsätze field modification kits and Umrüst-Bausätze factory conversion kits were part of a system promulgated by the RLM as a whole, throughout the German military aviation industry, with each airframe type number having its own set of “/R” and/or “/U” numbered designations for such upgrade packages.


The final production version of the Bf 109 was the K series, or “Kurfürst”, introduced in the autumn of 1944, powered by the DB 605D engine with up to 2,000 PS (1,973 HP). Though externally akin to the late production Bf 109G series, a large number of internal changes and aerodynamic improvements were incorporated that improved its effectiveness and remedied existing flaws, keeping it competitive with the latest Allied and Soviet fighters.[5][53] The Bf 109′s outstanding rate of climb was superior to all Allied adversaries including the P-51D Mustang, Spitfire Mk. XIV and Hawker Tempest Mk. V.[54]


Postwar, the 109 was built in Czechoslovakia, as the Avia S-99 and S-199 and in Spain as the Hispano Aviación Ha 1109 and 1112[55]


Production


Total Bf 109 production was 33,984 units;[1] Wartime production (September 1939 to May 1945) was 30,573 units. Fighter production totalled 47% of all German aircraft production, and the Bf 109 accounted for 57% of all German fighter types produced.[56] A total of 2,193 Bf 109 A–E were built prewar, from 1936 to August 1939.


Some 865 Bf 109G derivatives were manufactured postwar under licence as Czechoslovak-built Avia S-99 & S-199s, with the production ending in 1948.[3] Production of the Spanish-built Hispano Aviación HA-1109 and HA-1112 Buchons ended in 1958.[3]


New production Messerschmitt Bf 109 fighters, 1936–1945.[57]







Assembly of Bf 109G-6s in a German aircraft factory.



























































Factory, locationUp to 19391939194019411942194319441945*Totals*
Messerschmitt, Regensburg


2034862,1646,3291,24110,423
Arado, Warnemünde


370



370
Erla, Leipzig


6838752,0154,4721,0189,063
Fieseler, Kassel


155



155
W.N.F., Wiener Neustadt


8361,2972,2003,0815417,892
Győri Vagon- és Gépgyár, Győr




39270
309
AGO, Oschersleben


381



381
Totals1,8601,5401,8682,6282,6586,41814,1522,80033,984

* Production up to end of March 1945 only.


Operational history


Main article: Messerschmitt Bf 109 operational history

The first Bf 109As saw service in the Spanish Civil War. By September 1939, the Bf 109 had become the main fighter of the Luftwaffe, replacing the biplane fighters, and was instrumental in gaining air superiority for the Wehrmacht during the Blitzkrieg. During the Battle of Britain, it was pressed into the role of escort fighter, a role for which it was not originally designed, and it was widely employed as a fighter-bomber as well as a photo-reconnaissance platform. Despite mixed results over Britain, with the introduction of the improved Bf 109F in the spring of 1941, the type again proved to be an effective fighter during the Invasion of Yugoslavia, the Battle of Crete, Operation Barbarossa, the invasion of the USSR and the Siege of Malta.


In 1942, it began to be partially replaced in Western Europe by a new German fighter, the Focke Wulf Fw 190, but it continued to serve in a multitude of roles on the Eastern Front and in the Defense of the Reich, as well as in the Mediterranean Theatre of Operations and with Erwin Rommel’s Afrikakorps. It was also supplied to several of Germany’s allies, including Finland, Hungary, Romania, Bulgaria, Croatia, and Slovakia.


More aerial kills were made with the Bf 109 than any other aircraft of World War II.[58] Many of the aerial victories were accomplished against poorly trained and badly organized Soviet forces in 1941 during Operation Barbarossa. The Soviets lost 21,200 aircraft at this time, about half to combat.[59] If shot down, the Luftwaffe pilots might land or parachute to friendly territory and return to fight again. Later in the War, when Allied victories began to bring the fight closer, and then to German territory, bombing raids supplied plenty of targets for the Luftwaffe. This unique combination of events lead to the highest-ever individual pilot victory scores.[60] One hundred and five Bf 109 pilots were each credited with the destruction of 100 or more enemy aircraft.[nb 6] Thirteen of these men scored more than 200 kills, while two scored more than 300. Altogether, this group of pilots were credited with a total of nearly 15,000 kills.[58] Though there was no official “ace” status in the Luftwaffe (unofficially, the term Experte (expert) was used for an experienced pilot irrespective of his number of kills), using the Allied definition of pilots who scored five or more kills, there were more than 2,500 Luftwaffe fighter aces in World War II.[61] Against the Soviets, Finnish-flown Bf 109Gs claimed a victory ratio of 25:1.[62]


Bf 109s remained in foreign service for many years after World War II. The Swiss used their Bf 109Gs well into the 1950s. The Finnish Air Force did not retire their Bf 109Gs until March 1954. Romania used its Bf 109s until 1955. The Spanish Hispanos flew even longer. Some were still in service in the late 1960s. They appeared in films (notably The Battle of Britain) playing the role of Bf 109Es. Some Hispano airframes were sold to museums, which rebuilt them as Bf 109s.


Operators


Note, this list includes operators who used Bf 109s for active service or combat. It does not include the United States, the United Kingdom and the Soviet Union, who all operated small numbers of captured aircraft for testing and evaluation (see: Messerschmitt Bf 109 operational history#Allied Bf 109s).







Finnish Messerschmitt Bf 109 G-2s during the Continuation War.










Romanian Messerschmitt Bf 109 at Stalingrad










S-199 782358 IAFM










Hispano Aviación HA-1112 Buchon, the second and last Spanish version built by Hispano Aviación










A Bf 109-E3 of the Swiss Air Forceat the Flieger-Flab-Museum.










Bf 109G-2 14792

Yugoslavian Aviation Museum










Bf 109F captured by the South African Air Force in 1943





 Bulgaria

  • Bulgarian Air Force operated 19 E-3s and 145 G-2/-6/-10s.

 NDH

  • Zrakoplovstvo Nezavisne Države Hrvatske operated over 50 Bf 109s, including E-4, F-2, G-2/-6/-10 and Ks.

 Czechoslovakia

  • Czechoslovak Air Force operated captured aircraft and continued building Messerschmitt Bf 109Gs after the war under the Avia S-99 name, but soon ran out of the 109′s Daimler-Benz DB 605 engine after many were destroyed during an explosion at a warehouse in Krásné Březno.

 Finland

  • Finnish Air Force ordered 162 aircraft (48 G-2s, 111 G-6s and three G-8s) from Germany, but 3 were destroyed during transit, leaving the FAF with 159 Bf109s.

 Nazi Germany

  • Luftwaffe was the main operator of the Bf 109.

 Hungary

  • Royal Hungarian Air Force operated three D-1s, 50 E-3/-4s, 66 F-4s and ~490 G-2/-4/-6/-8/-10/-14s.

 Israel

  • Israeli Air Force operated the Avia S-199 derivative, bought from Czechoslovakia. Despite the type’s shortcomings the Israeli scored 8 victories. Egypt and Syria claimed four S-199 kills, and one probable.[63]

 Italy

  • Regia Aeronautica operated some F-4s and G-6s.

 Italian Social Republic

  • Aeronautica Nazionale Repubblicana operated 300 G-6/-10/-14s and two G-12s; three K-4s were also received.

 Japan

  • Imperial Japanese Army Air Force purchased five E-7s in 1941. The aircraft were used for tests and trials.

 Romania

  • Royal Romanian Air Force operated 50 E-3/4s, 19 E-7s, two F-2s, five F-4s and at least 235+ G-2/G-4/G-6/-8s plus 75 IAR built 109G-6a.

  • Romanian Air Force – Postwar.

Slovakia Slovak Republic

  • Slovenské vzdušné zbrane operated 16 E-3s, 14 E-7s and 30 G-6s.

  • Slovak Insurgent Air Force operated three G-6s.

 Spanish State

  • Spanish Air Force operated some D-1s, E-3s and 15 F-4s, and may have received several older B-types. Volunteers of Escuadrilla Azul on the Eastern Front operated E-4, E-7, E-7/B, F-2, F-4 (belonged in JG-27 under the command of Luftflotte 2,until April 1943) among G-4 and G-6 (detached in JG-51 under the command Luftflotte 4, until June 1944). A variant under license by the name Hispano Aviación HA-1112 was produced until 1958.

  Switzerland

  • Swiss Air Force operated 10 D-1s, 89 E-3a variants, two F-4s and 14 G-6s.

 Yugoslavia

  • Royal Yugoslav Air Force operated 73 E-3a variants.

  • SFR Yugoslav Air Force operated several ex-NDH and Bulgarian Bf 109Gs.

Aircraft on display


Main article: List of surviving Messerschmitt Bf 109s



File:Bf109g10.ogg



Bf 109 G-10 (Messerschmitt foundation) flight demonstration





Australia


  • A Bf 109 G-6 is on display at the Australian War Memorial, Canberra.[64] It is the last example to retain its original wartime camouflage and markings.[citation needed]

Brazil


  • A Bf 109 G2/R3 is on display at the Museu TAM near São Carlos, some 250 km northwest of São Paulo City in the State of São Paulo, Brazil. It was recovered from the bottom of a lake in Norway. it’s painted in wrong colours, depiciting the plane of the German ace Hans-Joachim Marseille. It also received a filter to resemble a Trop series aircraft.

Canada


  • A Bf 109 F-4/trop is on display at the Canada Aviation and Space Museum in Ottawa, Ontario.

Finland


  • A Bf 109 G-6 “MT-452″ is on display at Finnish Aviation Museum.

  • A Bf 109 G-6 “MT-507″ is on display in the Aviation Museum of Central Finland, Tikkakoski.[65]

Germany


  • A Bf 109 G-4 of JG 52 salvaged from Black Sea is displayed at the Technikmuseum Speyer.[66]

  • A Bf 109 G-6 is on static display at the Sinsheim Auto & Technik Museum.[67][68]

  • A Bf 109 E-3/E-4 is on static display at the Deutsches Technikmuseum Berlin.[69]

  • A Bf 109 E is on display at the Deutsches Museum, Munich, Germany.

Poland


  • A Bf 109 G-6 163306, ex-RQ + DR, ex-JGr. West “Red 3″ – crashed 28 May 1944, Red 3, displayed by Fundacja Polskie Orły.

Russia


  • A Bf 109 G-6 (Werk-Nummer 411768) has been restored to display status at the Zadorozhny Technical Museum, Moscow.

South Africa


  • A preserved Bf 109 F-2 is on display at the South African National Museum of Military History in Johannesburg. This museum also has on display a Bf 109 E which crashed during the Battle of Britain.

United Kingdom


  • A Bf 109 G-2/trop and a Bf 109 E-3 are on public display at the Royal Air Force Museum London; both aircraft were captured intact during the war and flown by the No. 1426 Flight RAF.[70]

  • A Bf 109 E-3, is at the Imperial War Museum Duxford.[71]

United States


  • A Bf 109 G-6 is on display at the Mighty Eighth Air Force Museum outside of Savannah Georgia.

  • A Bf 109 G-6 is displayed at the National Air and Space Museum in Washington DC.

  • A Bf 109 G-10 is on display at the Evergreen Air Museum.[72] in McMinville, Oregon. This aircraft is flightworthy.

  • A Bf 109 G-6 610824 (N109MS), ex-II/JG 52 “Black 2″, ex-USAAF FE-124, T2-124, ” Blue 4 “, National Museum of the United States Air Force, Wright-Patterson AFB, Ohio, USA.

  • A Bf 109 E-3 in flying condition is on display at The Flying Heritage Collection in Everett, WA

Serbia


  • A Bf 109 G-2 14792, ex-GJ + QJ, ex-Yugoslavian AF 9663 “63″, obtained from Bulgaria after the war, and restored, displayed at Museum of Aviation (Belgrade).

Specifications (Bf 109 G-6)


Orthographically projected diagram of the Bf 109 G-6.

Data from The Great Book of Fighters[73] and the Finnish Air Force Bf 109 Manual


General characteristics


  • Crew: One

  • Length: 8.95 m (29 ft 7 in)

  • Wingspan: 9.925 m (32 ft 6 in)

  • Height: 2.60 m (8 ft 2 in)

  • Wing area: 16.05 m² (173.3 ft²)

  • Empty weight: 2,247 kg (5,893 lb)

  • Loaded weight: 3,148 kg (6,940 lb)

  • Max. takeoff weight: 3,400 kg (7,495 lb)

  • Powerplant: 1 × Daimler-Benz DB 605A-1 liquid-cooled inverted V12, 1,475 PS (1,455 hp, 1,085 kW)

  • Propellers: VDM 9-12087 three-bladed light-alloy propeller
    • Propeller diameter: 3 m (9 ft 10 in)


Performance


  • Maximum speed: 640 km/h (398 mph) at 6,300 m (20,669 ft)

  • Cruise speed: 590 km/h (365 mph) at 6,000 m (19,680 ft)

  • Range: 850 km (528 mi)1,000 km (621 mi) with droptank

  • Service ceiling: 12,000 m (39,370 ft)

  • Rate of climb: 17.0 m/s (3,345 ft/min)

  • Wing loading: 196 kg/m² (40 lb/ft²)

  • Power/mass: 344 W/kg (0.21 hp/lb)

Armament


  • Guns:
    • 2 × 13 mm (.51 in) synchronized MG 131 machine guns with 300 rounds per gun

    • 1 × 20 mm MG 151 cannon as Motorkanone with 200 rpg.[74] G-6/U4 variant: 1 × 30 mm (1.18 in) MK 108 cannon as Motorkanone with 65 rpg

    • 2 × 20 mm MG 151/20 underwing cannon pods with 135 rpg (optional kit—Rüstsatz VI)


  • Rockets: 2 × 21 cm (8 in) Wfr. Gr. 21 rockets (G-6 with BR21)

  • Bombs: 1 × 250 kg (551 lb) bomb or 4 × 50 kg (110 lb) bombs or 1 × 300-litre (79 US gal) drop tank

Avionics


  • FuG 16Z radio




Messerschmitt Me 109G-6 GUSTAW

No comments:

Post a Comment